Code reproduction documentation

Author: Ting Liu

1. Software and library requirements
2. Download software
2.1. MATLAB
2.2. Matconvnet 1
2.3. Visual Studio
2.4. CUDA
2.5. CUDNN
3. Experimental environment construction process
3.1 CPU compilation
3.2 GPU compilation7
4. Run the WSWTNN-PnP method code
4.1 Code download:16
4.2 Run Demo WSWTNN PnP16

Catalogue

1. Software and library requirements

The following software needs to be installed before running Demo_WSWTNN_PnP:

Matlab 2018a Matconvnet Visual Studio 2015 CUDA 9.0 CUDNN v7.6.5 Computer system: Windows 10, Intel Core i7-10870H CPU (2.20 GHz), RTX 2060

(Note: For computers with different performance and different versions of matlab, the CUDA version should be different. You need to select the version of CUDA and CUDNN according to your computer.)

2. Download software

2.1. MATLAB

MATLAB 2018a: <u>https://pan.baidu.com/s/1Rl2pv0cGv27skG_02Dtjgw</u> [key]: z6so

2.2. Matconvnet

Matconvnet: <u>https://www.vlfeat.org/matconvnet/</u> Place the matconvnet-1.0-beta25 file under MATLAB/R2018a/toobox in the MATLAB 2018a installation location as shown in Fig. 2.1 below:

#XIIIX	3112	711月	11/15	化四千
📜 « Pi	rogram Files (x86) > MATLAB	> R2018a > toolbox	· U 2	在 toolbox 中搜索
	名称 ▲ javabuilder	修改日期 2021/4/15 22:50	类型 文件夹	大小
	📕 local	2021/4/15 22:56	文件夹	
	📜 lte	2021/4/15 22:53	文件夹	
	📕 ltehdl	2021/4/15 22:50	文件夹	
nts	🧵 map	2021/4/15 22:53	文件夹	
	📜 matconvnet-1.0-beta25	2021/5/1 10:29	文件夹	
	📕 matlab	2021/4/15 22:47	文件夹	
	📕 matlabxl	2021/4/15 22:50	文件夹	
	📕 mbc	2021/4/15 22:53	文件夹	
	mlhadoop	2021/4/15 22:50	文件夹	
(C:)	📜 mpc	2021/4/15 22:53	文件夹	
-)	💄 mps	2021/4/15 22:50	文件夹	
·/	multisim	2021/4/15 22:48	文件夹	
) (F.)	📕 nnet	2021/4/15 22:54	文件夹	

Figure 2.1

2.3. Visual Studio

Visual Studio 2015: <u>https://pan.baidu.com/s/1bkEexqA8rMiEaTcYkcQdfg</u> [key]: 5pd5

2.4. CUDA

CUDA 9.0 https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html The steps for configuring CUDA are as follows: https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html

2.5. CUDNN

CUDNN v7.6.5: <u>https://developer.nvidia.com/rdp/cudnn-archive</u> The steps for configuring CUDNN are as follows: <u>https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-windows</u>

3. Experimental environment construction process

3.1 CPU compilation

(1) Add matconvnet-1.0-beta25 and its sub files to D:\Program Files (x86)\MATLAB\R2018a\toolbox

📣 MATLAB R2018a							
主页 绘图 APP							
🗇 🔿 🔁 📒 🕨 D: 🕨 Program Files (x86) 🕨 I	MATLAB + R2018a + toolbox +						
当前文件夹	命令行窗口						
□ 名称 ▲	▲ 设置路径					- 0	X
E aero ^	· · · · · · · · · · · · · · · · · · ·						_
🗄 📒 aeroblks	新有面改将立即生效						
🗄 📕 antenna	MIRECOULTER TWO						
🗄 📕 audio	添加文件夹	IVIATLAD 技楽曲任:		VI 11 V V	1401 100		
🗄 📕 autoblks	100000011200	D:\Program Files (X86)	MATLAB/R2018a	Ntoolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	<u>^</u>
🗄 📕 autoblks_utils	添加并包含子文件夹	D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	
∃ 📙 bioinfo		D:\Program Files (X86)	MATLAB\R2018a	toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	•
∃ 📒 coder		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	
E comm		D:\Program Files (X86)	MATLAB\R2018a	\toolbox\matconvn	et-1.0-beta25\ma	tconvnet-1.0	•
		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	
E compiler		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	•
E compiler_sdk	移至顶端	D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	
± control		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	·
E curvefit	上移	D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	•
± daq	742	D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	·
± database	1.45	D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	
	移至底端	D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	
		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	
		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	•
		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	•
		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	·
∃ dsp		D:\Program Files (x86)	MATLAB\R2018a	\toolbox\matconvne	et-1.0-beta25\ma	tconvnet-1.0	·
₽ econ	删除	 D-\Drogram Eiler (vR6) 	MATI AR\ 820183	Ntoolhov/matconung	at_1 0_hat=751ms	tconvnet_1 ()	
∃ _ edalink						-	
⊞ 📕 eml		保存	关闭	还原	默认	帮助	
🗉 📙 exlink						1	
🗄 📕 finance							

Figure 3.1

(2) Enter mex-setup in the MATLAB command line window to see if mex-setup C++ appears. If no mex-setup C++ appears, Visual Studio 2015 is not successfully installed

```
>> clear all
>> mex -setup
MEX 配置为使用 'Microsoft Visual C++ 2015 (C)' 以进行 C 语言编译。
警告: MATLAB C 和 Fortran API 已更改,现可支持
    包含 2<sup>32-1</sup> 个以上元素的 MATLAB 变量。您需要
    更新代码以利用新的 API。
    您可以在以下网址找到更多的相关信息:
    https://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
要选择不同的语言,请从以下选项中选择一种命令:
 mex -setup C++
 mex -setup FORTRAN
MEX 配置为使用 'Microsoft Visual C++ 2015' 以进行 C++ 语言编译。
警告: MATLAB C 和 Fortran API 已更改,现可支持
    包含 2<sup>32-1</sup> 个以上元素的 MATLAB 变量。您需要
    更新代码以利用新的 API。
    您可以在以下网址找到更多的相关信息:
    https://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
MEX 配置为使用 'Microsoft Visual C++ 2015' 以进行 C++ 语言编译。
警告: MATLAB C 和 Fortran API 已更改,现可支持
    包含 2<sup>32-1</sup> 个以上元素的 MATLAB 变量。您需要
    更新代码以利用新的 API。
    您可以在以下网址找到更多的相关信息:
    https://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html.
>> v1_compilenn
```

Figure 3.2

My Visual Studio 2015 installation path: C:\Program Files (x86)\VS 2015\professional

(Note: Add the installation directory to the Path of the environment variable \rightarrow system variable.)

	值
OneDrive	C:\Users\12978\OneDrive
OneDriveConsumer	C:\Users\12978\OneDrive
Path	C:\Users\12978\AppData\Local\Microsoft\WindowsApps;
TEMP	C:\Users\12978\AppData\Local\Temp
TMP	C:\Users\12978\AppData\Local\Temp
	新建(N) 编辑(E) 删除(D)
统变量(S)	
统变量(S)	
统变量(S) 变量	值 ()windows)cystem22)cmd.ovo
統变量(S) 变量 ComSpec	值 C:\windows\system32\cmd.exe C\Program Files\N\/IDIA GPU Computing Toolkit\CUDA\v9.0
统变量(S) 变量 ComSpec CUDA_PATH CUDA_PATH V9 0	值 C:\windows\system32\cmd.exe C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0
統变量(S) 变量 ComSpec CUDA_PATH CUDA_PATH_V9_0 DriverData	值 C:\windows\system32\cmd.exe C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Windows\System32\Drivers\DriverData
統变量(S) 变量 ComSpec CUDA_PATH CUDA_PATH_V9_0 DriverData NUMBER_OF_PROCESSORS	值 C:\windows\system32\cmd.exe C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Windows\System32\Drivers\DriverData 16
統变量(S) 变量 ComSpec CUDA_PATH CUDA_PATH_V9_0 DriverData NUMBER_OF_PROCESSORS NVCUDASAMPLES_BOOT	值 C:\windows\system32\cmd.exe C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Windows\System32\Drivers\DriverData 16 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0
統变量(S) 变量 ComSpec CUDA_PATH CUDA_PATH_V9_0 DriverData NUMBER_OF_PROCESSORS NVCUDASAMPLES_ROOT NVCUDASAMPLES9_0_ROOT	值 C:\windows\system32\cmd.exe C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Windows\System32\Drivers\DriverData 16 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0
統变量(S) 变量 ComSpec CUDA_PATH CUDA_PATH_V9_0 DriverData NUMBER_OF_PROCESSORS NVCUDASAMPLES_ROOT NVCUDASAMPLES9_0_ROOT	值 C:\windows\system32\cmd.exe C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Windows\System32\Drivers\DriverData 16 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0
统变量(S) 变量 ComSpec CUDA_PATH CUDA_PATH_V9_0 DriverData NUMBER_OF_PROCESSORS NVCUDASAMPLES_ROOT NVCUDASAMPLES9_0_ROOT	Image: C:\windows\system32\cmd.exe C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0 C:\Windows\System32\Drivers\DriverData 16 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0 C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0

Figure 3.3

297 绡	扁損环境变量	
变		
Or	C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin	新建(N)
Or	C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\libnv	
Pa	C:\ProgramData\Oracle\Java\javapath	编辑(E)
TE	C:\windows\system32	1
TN	C:\windows	浏览(B)
	C:\windows\System32\Wbem	
	C:\windows\System32\WindowsPowerShell\v1.0\	删除(D)
_	C:\windows\System32\OpenSSH\	
	D:\Program Files (x86)\texlive\2019\bin\win32	
	D:\Program Files (x86)\MATLAB\R2014a\runtime\win64	上移(山)
-	D:\Program Files (x86)\MATLAB\R2014a\bin	10(0)
统	D:\Program Files (x86)\MATLAB\R2014a\polyspace\bin	下接(0)
र्गाः	D:\Program Files (x86)\MATLAB\R2018a\runtime\win64	1-12(0)
	D:\Program Files (x86)\MATLAB\R2018a\bin	
NV	C:\Users\12978\.dnx\bin	
NN	C:\Program Files\Microsoft DNX\Dnvm\	编辑义平(1)
NN	C:\Program Files (x86)\NVIDIA Corporation\PhysX\Common	
Dr	%LISEPDPOEILE%) day/bin	

Figure 3.4

(3) Enter vl_compilenn in the command line window of MATLAB, vl_compilenn is successfully compiled.

```
>> v1_compilenn
  使用 'Microsoft Visual C++ 2015' 编译。
  MEX 已成功完成。
  使用 'Microsoft Visual C++ 2015' 编译。
fx MEX 已成功完成。
```


(4) Enter test command vl_testnn in the command line window of MATLAB. vl_testnn is successfully compiled.

>> v1_testnn

正在运行 nnspnorm

正在设置 nnspnorm[dataType=single, device=cpu] 设置 nnspnorm[dataType=single, device=cpu] 在 0.0031351 秒内完成 正在运行 nnspnorm[dataType=single, device=cpu]/basic nnspnorm[dataType=single, device=cpu]/basic 在 0.75398 秒内完成 正在拆解 nnspnorm[dataType=single, device=cpu] 拆解 nnspnorm[dataType=single, device=cpu] 在 0 秒内完成 nnspnorm 在 0.75711 秒内完成

result =

1×1793 <u>TestResult</u> 数组 - 属性:

Name Passed Failed Incomplete Duration Details 总计:

> 1793 Passed, O Failed, O Incomplete. 135.0925 秒测试时间。

> > Figure 3.6

Fig 3.6 shows that without using CUDA and CUDNN to drive the GPU, the CPU is used alone to run the program compiled by matconvnet.

3.2 GPU compilation

First, look at the computer's CUDA device properties and enter gpuDevice in the MATLAB command line window:

```
>> gpuDevice
ans =
  <u>CUDADevice</u> - 属性:
                      Name: 'NVIDIA GeForce RTX 2060'
                     Index: 1
         ComputeCapability: '7.5'
            SupportsDouble: 1
             DriverVersion: 11.6000
            ToolkitVersion: 9
        MaxThreadsPerBlock: 1024
          MaxShmemPerBlock: 49152
        MaxThreadBlockSize: [1024 1024 64]
               MaxGridSize: [2.1475e+09 65535 65535]
                 SIMDWidth: 32
               TotalMemory: 6.4421e+09
           AvailableMemory: 5.2690e+09
       MultiprocessorCount: 30
              ClockRateKHz: 1200000
               ComputeMode: 'Default'
      GPUOverlapsTransfers: 1
    KernelExecutionTimeout: 1
          CanMapHostMemory: 1
           DeviceSupported: 1
```

Figure 3.7

3.1.1 Install CUDA

Follow the steps on the official website to install CUDA: https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html

Quick Start Guide (PDE) - v11.8.0 (<u>plder</u>) - Last updated October 3, 2022 - <u>Send Feedback</u>
CUDA Quick Start Guide Minimal first-steps instructions to get CUDA running on a standard system.
1. Introduction This guide covers the basic instructions needed to install CUDA and verify that a CUDA application can run on each supported platform.
These instructions are intended to be used on a clean installation of a supported platform. For questions which are not answered in this document, please refer to the Windows Installation Guide and Linux Installation Guide.
The CUDA installation packages can be found on the CUDA Downloads Page.
2. Windows When installing CUDA on Windows, you can choose between the Network Installer and the Local Installer. The Network Installer allows you to download only the files you need. The Local Installer is a stand-alone installer with a large initial download. For more details, refer to the Windows Installation Guide.
2.1. Network Installer Perform the following steps to install CUDA and verify the installation.
 Launch the downloaded installer package. Read and accept the EULA. Select "next" to download and install all components. Once the download completes, the installation will begin automatically. Once the installation completes, click "next" to acknowledge the Nsight Visual Studio Edition installation summary. Click "close" to close the installer. Navigate to the Samples' indoyd directory in <u>https://github.com/IVIDIA/cuda-samples/tree/master/Samples/5. Domain. Specific/nbody</u>. Open the <u>inbody</u> Visual Studio solution file for the version of Visual Studio you have installed, for example, <u>inbody_vs2019.sln</u>.

Figure 3.8

Figure 3.9

GPUOverlapsTransfers: 1

Figure 3.10

Figure 3.11

Open the nbody Visual Studio solution file for the version of Visual Studio you have installed. Then, Open the 'Build'menu within Visual Studio and click 'Build Solution'.

APP					
5187744	📕 🛃 📜 = nbody			- 0	×
林	文件 主页 共享	杳看			~ ?
n File	★ 2 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	 第切 复制路径 私贴快捷方式 移动到 复利到 删除 重命名 组织 	 □ 新建项目・ ① 轻松访问・ 新建 文件夹 新建 	■ 打开 · ■ 打开 · ■ 编辑 · ● 历史记录 · 打开 · ● 1 1 1 1 1 1 1 1 1 1	全部选择 全部取消 反向选择 选择
					1.101.00
	← → Y <mark>▲</mark> «	CUDA Samples > v9.0 > 5_Simulations > n	body v	O ^少 住 nbody	中搜索
		名称	修改日期	类型	大小 ^
	★ 快速访问	📕 x64	2022/10/11 22:55	文件夹	
	▶ 此电脑	🖞 bodysystem.h	2017/3/30 11:27	C/C++ Header	
	1 3D 对象	bodysystemcpu.h	2017/3/30 11:27	C/C++ Header	
		🗄 bodysystemcpu_impl.h	2017/3/30 11:27	C/C++ Header	
	Decuments	bodysystemcuda.cu	2017/3/30 11:27	CU 文件	
		🗓 bodysystemcuda.h	2017/3/30 11:27	C/C++ Header	
	■ 图片	🗄 bodysystemcuda_impl.h	2017/3/30 11:27	C/C++ Header	
	◆ 下载	galaxy_20K.bin	2017/3/30 11:27	BIN 文件	
	♪ 音乐	🛱 nbody.cpp	2017/3/30 11:27	C++ Source	
-	🔜 桌面	🖻 nbody_vs2010.sdf	2022/10/12 15:28	SQL Server Com	43
_	Uindows (C:)	👼 nbody_vs2010.sln	2017/9/3 0:32	Microsoft Visual	<
-	🥌 新加卷 (D:)	nbody_vs2010.VC.db	2022/10/11 23:00	Data Base File	35
最大	🥪 ZX1 512G (F:)	🛱 nbody_vs2010.vcxproj	2022/10/11 22:50	VC++ Project	
	781 5100 (5)	nbody_vs2012.sdf	2022/10/12 15:27	SQL Server Com	43
	🥪 ZAT STZG (F:)	nbody_vs2012.sln	2017/9/3 0:32	Microsoft Visual	
	🥩 网络	nbody_vs2012.VC.db	2022/10/11 22:55	Data Base File	35
		hbody_vs2012.vcxproj	2022/10/11 22:50	VC++ Project	
		mbody_vs2013.sdf	2022/10/12 23:24	SQL Server Com	43
		nbody_vs2013.sln	2017/9/3 0:32	Microsoft Visual	
		nbody_vs2013.vcxproj	2022/10/12 12:15	VC++ Project	
		nbodv vs2015.sln	2017/9/3 0:32	Microsoft Visual	>
	20 4 15 17				[] []

Figure 3.12

Open nbody_Vs2010. sln as follows:

nbody_vs2010 - Microsoft Visual Studio			マ じ 快速启动 (Ctrl+Q)	- 5	×
文件(E) 編續(E) 视聞(Y) 项目(E) 生成(B) 调试(D) 团队()	(L) 工具(I) 測试(S) 分析(N) 窗口(W) 帮助(H)			登录	
🎯 - 이 🖏 - 🏩 🔐 🤔 🤊 - 代 - 🛛 Debug 🔹 x64	- 🕨 本地 Windows 调试器 - 🏓 🚽 💷 💍 😚	→ * ?* * 裕 🛃 物 ∰ 🗉 注 📕 🖬 🦄 🦓 📮			
bodysystem.h + ×			▼ 解决方案资源管理器	-	4 ×
🗟 nbody	 ★ (全局范围) 	•	· 000 10-500 000		
* this software and related documentation outsi * is strictly prohibited. * * */ * * * * * * * * * * * * *	ie the terms of the ULA		使生料地方電信管理場(Ctri+) 「」「新決力管である(Ctri+) 「」「新決力管である(22010°(1 小道色) 「他のなり 「「「からなり 」 ですの用) ですの用) 目 bodysystem.puh) 目 bodysystem.puh) 目 bodysystem.puh 」 bodysystem.cpu 」 bodysystem.cpu		ρ.
NEOTY_DUPIC_SHELL NEOTY_DUPIC_SHELL NEOTY_NUM_CONFIGS); email BodyArray { BODYSISTEM_FOILTOK, BODYSISTEM_FOLLOTTY, };			▶ 目 bodysystemucad_implh b teaboutran 能力支支が使用者 能力支支が使用者 に の人のが合理法 実成用 に な の し の の の の の の の の の の の の の	•	₽ × •
<pre>template (typename T) struct vec3 (typedef float Type; }: // dummy</pre>					-
100 % • 4					
输出				*	₽×
显示输出来源(S): 生成	 ↓ 旨 旨 旨 Ⅰ 径 約 				
 一一一日命改正, 項目: わらか, 配置: Dabug 464 つ noboy, x2010 exerge(-) 20: CPYergenabla-120: CPYergenabla-120: TDIA Corp. 生成: 成功 1 个, 失敗 0 个, 截新 0 个, 就过 	- - - - - - - - - - - - - - - - - - -	in64/Debug/nbcdy.exe			*

Figure 3.13

Open nbody_vs2012. sln as follows:

Figure 3.14

Open nbody_vs2013. sln as follows:

nbody_v	s2013 - Microsoft Visual Studio				マ 🙂 快速启动 (Ctrl+Q)	- 0	×
文件(E) 编辑	(E) 视聞(Y) 项目(P) 生成(B) 调试(Q) 团队(M)	工具(I) 測试(S) 分析(N) 窗口(W)	帮助(日)			登录	M
0.0	ን • 🖕 💾 🚰 🦻 - ୯ - Debug 🔹 x64	 ト本地 Windows 调试器・ 🏓 🚽 	II=0 8 → : ? : 8 . b f	1월 2일 📕 📢 🎲 🦄 🚽			
🕅 abadu ca					6.7% cb9% - (Z-3.200.000 (-2.2.1.11) FBR		1 v
Si nbody.cp					「県央万葉黄津管理委		4 ×
E Indouy	*	(±/4//644)		4	00000.20000		
	* Copyright 1993-2015 WVIDIA Corporation. All ri	hts reserved.		1	搜索解决方案资源管理器(Ctrl+;)		ρ-
33	*	(mm c)			🕨 💼 外部依赖项		-
H	* Flease refer to the WilliA end user license agr	that sources your use of			▶ ■ 引用		
<u>a</u>	* this software. Any use, reproduction, disclosur	and govern you use of			bodysystem.h		
	* this software and related documentation outside	the terms of the EULA			bodysystemcpu.h		
	* is strictly prohibited.				bodysystemcpu_impi.n		
	*/				bodysystemcuda.cu		
					bodysystemcuda impl.h		
							12
	include (helper_gl.h)	THE A) II and and (WITHEA)			** render_particles.cpp		
	hi defined(#1832) defined(_#1832) defined(#. Sinclude (GL/awlew.b)	(NO4) [] delined C#INO4)			b Int render particles h	_	Ŧ
	endif				解決万葉资源管理器 团队资源管理器 癸祝郎		
					尾性		Ψ×
E E	if defined(_APPLE_) defined(MACOSX)						
	include (GLUT/glut.h>	Cara Crons			211 Qu / P		
ė.	lelse				No. 2 1 1		
L:	linclude (GL/freeglut.h>						
	lendif						
	include (parangl.h)						
:	linclude (cstdlib)						
	linclude <cstdip></cstdip>						
100.05	include (algorithm)			*			
100 %	4						_
输出						÷ 1	φ×
显示输出死	R源(<u>5</u>): 生成	• 智 智 智 物					
1>	· 已启动生成: 项目: nbody, 配置: Debug x64		1. / 0. /				
12 nBoo	ny_vs2013.vcxproj => C: (FrogranData (sviDia Corpora == 生成: 成功 1 个, 失敗 0 个,最新 0 个,跳过 0	↑ =============	ody(//Din/Winow/Debug/hoody.exe				
							w

Figure 3.15

Navigate to the CUDA Samples' build directory and run the nbody sample. Note: Run samples by navigating to the executable's location, otherwise it will fail to locate dependent resources.

	管理 Debug				
大井 主贝 共享 ★ 自定到 复制 払い 均率访问 算制 払い 資助板	直 イ	□ □ 新建项目 ▼ 前建 前建 文件夹 新建	 ■ 打开・ 属性 ⑦ 编辑 ⑦ 历史记录 打开 	全部选择 全部取消 反向选择 选择	
← → × ↑	比电脑 〉 Windows (C:) 〉 ProgramData 〉 N	IVIDIA Corporation > Cl	JDA Samples > v9.0	> bin > win64 >	Debug
I Documents 个	名称 Jaj matrixMulDrv.lik	修改日期 2021/5/2 10:07	类型 Incremental Link	大小 2,614 KB	2
■ 图片	atrixMulDrv.pdb	2021/5/2 10:07	Program Debug	6,044 KB	
➡ 下载	nbody.exe	2022/10/12 15:29	应用程序	3,389 KB	
♪ 音乐	∯ª nbody.exp	2022/10/12 12:16	Exports Library F	. 1 KB	
■ 卓面	J nbody.ilk	2022/10/12 15:29	Incremental Link	6,716 KB	
Windows (Ct)	nbody.iib	2022/10/12 12:16	360) 玉箔	2 KB	
	🔁 nbody.pdb	2022/10/12 15:29	Program Debug	10,756 KB	
360Sate	simpleAssert.exe	2021/5/2 10:07	应用程序	1,804 KB	
data	simpleAssert.exp	2021/5/210:07	exports Library F	2 5 24 KB	
Download		2021/5/2 10:07	260Fc	3,324 KB	
Intel	simpleAssert.ndb	2021/5/2 10:07	Drogram Dobug	6 0 2 / VP	
📙 list	simpleAssert pyrtc eve	2021/5/2 10:07	program bebug 应田程序	1 843 KB	
PerfLogs	simpleAssert_nvrtc.ik	2021/5/2 10:07	Incremental Link	4 296 KB	
📕 pool	simpleAssert_nvrtc.ndb	2021/5/2 10:07	Program Debug	8 116 KB	
📕 Program File	simple isor c_interpus	2021/5/2 10:07	应用程序	1.893 KB	
Program File	a simpleAtomicIntrinsics.exp	2021/5/2 10:07	Exports Library F	1 KB	
	simpleAtomicIntrinsics.ilk	2021/5/2 10:07	Incremental Link	3.576 KB	
Windows	simpleAtomicIntrinsics.lib	2021/5/2 10:07	360压缩	2 KB	
日 田 山	simpleAtomicIntrinsics.pdb	2021/5/2 10:07	Program Debug	6,972 KB	
	simpleAtomicIntrinsics nvrtc.exe	2021/5/2 10:07	应用程序	1,850 KB	
■ VC_KED.cab 211 个项目 选中 1 个项	D simpleAtomicIntrinsics_nvrtc.ilk 组 3.30 MB	2021/5/2 10:07	Incremental Link	4,322 KB	
		iewo+.uii	9/3/2014 3:40 PIVI	ULL FILE	224 ND

Figure 3.16 (图 3.16)

The execution results are as follows:

文件(E) 編編(E) 視窩(V) 项目(E) 生成(B) 调试(I 〇 - 〇 哲 - 🏩 🔐 ヴ - ペ - Debug -) 図队(<u>M)</u> 工具(<u>1</u>) 演试(<u>5</u>) 分析(<u>N</u>) 窗口(<u>M</u>) 帮助(<u>H</u>) x64 ・ ▶ 本地 Windows 调试器 - 第 - 11 目 〇 〇	→ : ? : ₩ <mark>-</mark> 15 11	[] 23 📕 11 11 14 🙀 🚽			<u>.</u>
<pre>bodycep = X bodycep = X b</pre>	(2年) 《全現法題》 《全現法題》 (全現法題) vation/CUDA Samples/v4.00/bin/winf4/Debug/ubbody.ese mubodiesa/Twistersen mode) (use double precision floating point values for simul (stores simulation data in host memory) (run benchmark to measure performance) (run benchmark to measure performance) (in benchmark to measure performance) (where if cumber of CUDA devices / D to use for simul (compares simulation results running once on the defa (run r-body simulation on the CPU) (load a tipsy model file for simulation) e not meant for performance measurements. Results may in video memory gooint simulation lation (WHDIA GeForce RTX 2060]	L CUDA N-Body (80720 bo Point Size Velocity Jamping Softering Factor Time Sche Velocity Scale Velocity Scale	des): 1.7 (pt 1.6 BPS 3.2 0 GP 1.000 0.44 0.002 2.72.000	Kithöpisihanitette Oplys single precision	3 - [- [

Figure 3.17

The results in Figure 3.17 show that the CUDNN library is installed successfully, and the GPU is used to speed up the operation.

3.1.2 Install CUDNN

Follow the steps on the official website to install CUDNN: <u>https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html</u>

NVIDIA CUDNN DOCUMENTATION
3.2. Downloading cuDNN for Windows In order to download cuDNN, ensure you are registered for the <u>NVIDIA Developer Program</u> .
Procedure
1. Go to: NVIDIA cuDNN home page.
2. Click Download.
3. Complete the short survey and click Submit.
4. Accept the Terms and Conditions. A list of available download versions of cuDNN displays.
5. Select the cuDNN version that you want to install. A list of available resources displays.
6. Download the cuDNN package for Windows (zip).
3.3. Installing on Windows
The following steps describe how to build a cubin dependent program.
About this task
You must replace 8.x and 8.x.y.z with your specific cuDNN version.
Package installation (zip)
In the following steps, the package directory path is referred to as <pre>spackagepath></pre> .
Procedure
1. Navigate to your <packagepath> directory containing the cuDNN package.</packagepath>
2. Unzip the cuDNN package. cumm-windows-x80_04archive.zip
 Copy the following files from the unzipped package into the NVIDIA cuDNN directory. a. Copy bin/cudnn*.dll to C:\Program Files\NVIDIA\CUDNN\v8.x\bin.
b. Copy include\cudnn*.h to C:\Program Files\WIDIA\CUDNN\v8.x\include.
c.Copy lib/cudnn*.lib to C:\Program Files\NVIDIA/CUDNN/v8.x\lib.
4. Set the following environment variable to point to where cuDNN is located. To access the value of the \$(PATH) environment variable, perform the following steps: a. Open a command prompt from the Start menu.
b. Type Run and hit Enter.
c. Issue the control sysdm.cpl command.
d. Select the Advanced tab at the top of the window.
e. Click Environment Variables at the bottom of the window,
f. Add the NVIDIA cuDNN bin directory path to the PATH variable:
Variable Name: PATH Value to Add: C:\Frogram Files\WVIDIA\CUDUN\v6.x\bin
5. Add rufNN to your Visual Studio protect
a. Open the Visual Studio project, right-click on the project name in Solution Explorer, and choose Properties.
b. Click VC++ Directories and append C:\Program Files\WUDIA\CUDMN\V6.x\include to the Include Directories field.
c. Click Linker > General and append C: VProgram Files/WNDIACUDMNV6.xX1b to the Additional Library Directories field.
c. Lick Linker > Input and append cudnn.lib to the Additional Dependencies field and click OK.
3.4. Uperading cuDNN having cuDNN and delete the old cuDNN bin, 11b, and header files. Remove the path to the directory containing cuDNN from the \$(PATH) environment variable. Reinstall a newer cuDNN version by following the steps in berailling on Whoden

Figure 3.18

Execute the following code in MATLAB:

(1) Enter mex-setup c++ in the MATLAB command line window.

Figure 3.19

(2) Enter vl compilenn ('enableGpu', true, ...'cudaRoot', 'C:\Program Files\NVIDIA

GPU Computing Toolkit\CUDA\v9.0', ... % Installation path of CUDA 'cudaMethod', 'nvcc', 'enableCudnn', 'true', ... 'cudnnRoot', 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDNN\cudnn-9.0-windows10-x64-v7\cuda'); % Installation path of CUDNN

>> mex -setup c++
MEX 配置为使用 'Microsoft Visual C++ 2015' 以进行 C++ 语言编译。
警告: MATLAB C 和 Fortran API 已更改,现可支持
 包含 2^32-1 个以上元素的 MATLAB 变量。您需要
 更新代码以利用新的 API。
 您可以在以下网址找到更多的相关信息:
 <u>https://www.mathworks.com/help/matlab/matlab_external/upgrading-mex-files-to-use-64-bit-api.html</u>。
>> vl_compilenn('enableGpu', true, ...
'cudaRoot', 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0', ... % CUDA的安装路径
'cudaMethod', 'nvcc', 'enableCudnn', 'true', ...
'cudnnRoot', 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDNN\cudnn-9.0-windows10-x64-v7\cuda'); % cuDNN的路径

Figure 3.20

The compilation results are as follows:

34CARA	1 V/S 0111/0411418 (11)56 2460
TLAB	▶ R2018a ▶ bin ▶
🕤 🏟	
	c:\program files\nvidia gpu computing toolkit\cuda\v9.0\include\crt\math_functions.h(5319): warning C4819: 该又件包含不能在当前代码贝(936)中表示的子符。请将该又
^	c:\program files\nvidia gpu computing toolkit\cuda\v9.0\include\crt\math_functions.h(6229): warning C4819: 该文件包含不能在当前代码页(936)中表示的字符。请将该文
	c:\program files\nvidia gpu computing toolkit\cuda\v9.0\include\crt\math_functions.h(7104): warning C4819: 该文件包含不能在当前代码页(936)中表示的字符。请将该文/
	c:\program files\nvidia gpu computing toolkit\cuda\v9.0\include\crt\math_functions.h(7914): warning C4819: 该文件包含不能在当前代码页(936)中表示的字符。请将该文
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
~	使用 'Microsoft Visual C++ 2015 (C)' 编译。
^	MEX 已成功完成。
•	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。
	使用 'Microsoft Visual C++ 2015 (C)' 编译。
	MEX 已成功完成。

Figure 3.21

(3) Enter run vl_setupnn in the command line window of MATLAB (在 MATLAB 的命令行窗口中输入 run vl_setupnn)

使用 'Microsoft Visual C++ 2015 (C)' 编译。 MEX 已成功完成。 fx >> run v1_setupnn

Figure 3.22

(4) Enter vl_testnn('gpu', true) on the command line window of MATLAB

```
使用 'Microsoft Visual C++ 2015 (C)' 编译。
MEX 已成功完成。
>> run v1_setupnn
>> v1_testnn('gpu', true)
fx
```

```
Figure 3.23
```

vl_nnnormalizelp.mexw64 vl_nnpool.mexw64 vl_nnroipool.mexw64 vl_taccummex.mexw64 vl_taccummex.mexw64 vl_taccummex.mexw64 vl_taccummex.mexw64 vl_nnbnorm.mexw64 (MEX 文件) 个 /作区 ⑦			× <	result =	
				1×3586 TestResult 数组 - 属性:	
称▲	值	最大值			
				Name	
				Passed	
				Failed	
				Incomplete	
				Duration	
				Details	
				总计: 3572 Passed, 14 Failed (<u>重新运行</u>), 14 Incomplete.	

Figure 3.24

Fig 3.24 shows that the matconvnet test code runs successfully in the GPU environment.

After the compilation of CPU and GPU, you can run the code of WSWTNN-PnP.

4. Run the WSWTNN-PnP method code

4.1 Code download:

website: https://github.com/LiuTing20a/WSWTNN-PnP1

4.2 Run Demo_WSWTNN_PnP

The code is running::

A MATLAB R201	8a											
主页	绘图	APP	扁緝器	1	5	发布	视图					
4 🔿 🔁 🖾 📕	▶ D: ▶ 360安全	浏览器下载 ▶ 光	场图像	目标相	金測 ▶	红外图像	小目标检测	▶ WSWTNN-PnP公	ਸ ▶			
当前文件夹				/编	编器 -	D:\360安	全浏览器下载	∖光场图像目标检测∖	红外图像	小目标检测\WSWTNN-PnP公开\D	emo_WSWTNN_PnP.m	
□ 名称 ▲				D	emo	WSWTN	N_PnP.m ×	trpca_WSWTNN	Ipnp.m	× +		
🖽 📕 data				1	96	Combinir	ng Deep Denc	iser and Low-rank	Priors	for Infrared Small Target De	tection	
🗄 📕 FFDNet			2	96	Correspo	onding Contr	ibutor: Ting Liu	(Email:	: liuting@nudt.edu.cn)			
🕀 📕 Figs1			3	96	Author A	fflications	: National Univer	sity of	f Defense Technology, China			
functions			4	96	To run t	he code, yo	u should install	Matconv	vnet first.			
tensor tool	hox-v3 1		5 % Written by Ting Liu									
WSWTNNte	TNNtool				6 % 2022-10-16							
Demo_WSV	VTNN_PnP.m			7 - tic;								
				8 -	cl	c;						
				9 -	cl	ear;						
				10 -	cl	ose all;						
				11 -	ad	dpath(1	CUNCTIONS/)			% Add path		
				13 -	au	woDir= '	WCWTNN-F	/ mP公开\moculte\1\	× .	6 save patch		
				14 -	im	gnath='	\WSWTNN-Pr	P公开\data\1\':		6 Data input nath		
				15 -	im	gDir = c	lir([ingnath	*. hnn' 1) :		% List all files with the .hm	o in the importh	
				16	59	patch	parameters	1				
				17 -	pa	tchSize	=40;	% patch size				
				18 -	sl	ideStep	=40;	% sliding step				
				19 -	la	nbdaL =	0.8;	% L				
				20 -	le	n = leng	th(imgDir);	% The length of	ingDir			
				21 -	21 - 🖓 for i=1:len							
				22 -		ing =	inroad([ino	nath immin(i) na	mal) · 4	a Read innut data		
				命令行	窗口							
				it	er 7,	nu=0.00	2, err=0.12	712, T 0 = 23				
				it	er 8,	nu=0.00	2, err=0.04	5564, T 0 = 20				
				it	er 9,	nu=0.00	2, err=0.02	295, T 0 = 15				
				it	er 10	mu=0.0	02, err=0.0	46826, T 0 = 13				
详细信息			^	it	er 11	0.0	02, err=0.0	46126, T 0 = 12				
工作区			۲	it	er 12	mu=0.0	02, err=0.0	30732, T 0 = 11				
名称▲	值	最大值		it	er 13	, mu=0.0	02, err=0.0	13368, T 0 = 10				
A	150x200 uint8	211	~	1t	er 14	mu=0.0	02, err=0.0	09499, 1 0 = 10				
🗄 backimg	150x200 double	199.0777		1t	er I,	mu=0.00	2, err=0.29	267, 1110 = 23529 767, 1110 = 46				
cornerStren	150x200 double	63.3211	_	11	er 2,	mu=0.00	2, err=0.00	529 T 0 = 40				
E .	150x200 uint8	211		11	er 4	nu=0.00	2 err=0.11	342 T 0 = 36				
ima	150x200 double	211		it	er 5.	nu=0.00	2. err=0.21	743. $ T 0 = 32$				
imgDir	110x1 struct		~	fx	,	-4 0.00	-,					
				* *								

Figure 4.1

Experimental results in the process of code running are shown as follows:

MATLAB R2018a		
主页 绘图 APP	编辑器 发布 视图	
🗇 🔶 词 河 📕 🕨 D: ▶ 360安全浏览器下载	▶ 光场图像目标检测 ▶ 红外图像小目标检测 ▶ WSWTNN-PnP公开 ▶	
当前文件夹	⑦ / 編編器 - D:\360安全浏览器下载\光场图像目标检测\红外图像小目标检测\WSWTNN-PnP公开\Demo WSWTNN	N PnP.m
□ 名称 ▲	Demo WSWTNN PnP.m 💥 trpca WSWTNNpnp.m 🗙 +	-
🖽 📕 data	1 % Combining Deep Denoiser and Low-rank Priors for Infrared Small Target Detection	
🗄 🧵 FFDNet	2 % Corresponding Contributor: Ting L 🗛 Figure 10 — 🗆 🗙	
I Figs1	3 % Author Afflications: National Uni 文件(编辑(表示(法认) 工具(古西(第日) 書籍)(云	
H functions	4 % To run the code, you should insta Art what art have a more than a the should a should be should be should be a should be a should be a should be a	
E tensor toolbox-v3.1	5 % Written by Ting Liu	
I WSWTNNtool	6 % 2022-10-16	
Demo_WSWTNN_PnP.m	i = tic;	
	10 - close all:	
	11 - addpath('functions/')	
	12 - addpath('WSWINHtool/')	
	13 - saveDir='\WSWINN-PnP公开\results	
	14 - ingpath='\WSWINH-PnP公开\data\1\'	
	15 - imgDir = dir([imgpath '*. bmp']); mgp	ath
	16 %% patch parameters	
	17 - patchSize =40; % patch size	
	18 - slidestep = 40; % sliding step	
	19 - Immoul - U.S. % Langth of implier	
	21 - [for jel]en	
	22 - ing = inraad(fingnath ingDir(i) nama]) · & Read innut data	
	命令行窗口	
	$ter 2$, $m = 0.002$, $er = 0.1451$, $ T _0 = 57$	
	iter 4, mu=0.002, err=0.12344, $ T 0 = 57$	
	iter 1, mu=0.002, err=0.29333, T 0 = 23558	
	iter 2, mu=0.002, err=0.50786, T 0 = 59	
详细信息	^ iter 3, mu=0.002, err=0.14539, T 0 = 55	
工作区		
名称 ▲ 值 最大值	iter 1, mu=0.002, err=0.29284, T 0 = 23525	
A 150x200 uint8 211	1ter 2, mu=0.002, err=0.50828, [T]0 = 53	
backing 150x200 double 199.0777	iter 5, mu=0.002, err=0.14559, $ 1 0 = 48$	
cornerStren 150x200 double 63.3211	iter 5 mu=0.002 err=0.21741 $ T 0 = 42$	
E 750x200 uint8 211	iter 6, mu=0.002, err=0.20117, T 0 = 38	
img 150x200 double 211	iter 7, mu=0.002, err=0.12682, T 0 = 32	
imgDir 110x1 struct	$\vee f_{x}$	
- 正忙		

Figure 4.2

Code running completed:

A MATLAB R201	8a									
主页	绘图	APP	编辑器	1	发布		视图			
4 🔶 🖬 🖾 📒	▶ D: ▶ 360安全	浏览器下载 ▶ →	光场图像	目标检测	▶ 红外	图像小	目标检测	▶ WSWTNN-PnP公开 ▶		
当前文件夹				🖉 编辑器	∦ - D:\3	60安全涉	刘览器下载	獻光场图像目标检测\红外图像小目标检测\WSWTNN-PnP公开\Demo_WSWTNN_PnP.m		
□ 名称▲				Den	no_WSV	VTNN_P	PnP.m >	trpca_WSWTNNpnp.m 🗙 🕂		
 ● 呑称▲ ● GEDNet ● FFDNet ● Figs1 ● functions ● results ● tensor_toolbox-v3.1 ● WSWTNNtool ● Demo_WSWTNN_PnP.m 				55 - 34 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 -	<pre>lineword, iseword, = Structure_tensor_remove(img, S), % step 2: calculate corner strength function cornerStrength = (((lambdal.Hambda2).((lambdal.Hambda2))); % step 3: obtain final weight asp maxYalue = (max(lambdal.hambda2).(Select the maximum of lambdal and lambda2 priorWeight = mat2gray(cornerStrength .* maxYalue); % step 4: construct path tensor of weight map tenW = gen_patch_ten(priorWeight, patchSize, slideStep); % The proposed VSUTENP-PnP model lambda4 = lambdaL / sqrt(max(nl,n2)*n3); % regularization term [tenB, tenT] = trpca_VSUTENP-PnP model % recover the target and background image tarImg = res_patch_ten_mean(tenB, img, patchSize, slideStep); % recover target image backImg = res_patch_ten_mean(tenB, img, patchSize, slideStep); % recover target image max = max(max(double(img))); E = uint8(mat2gray(tarImg)*maxv); % target image % save the results is mine(f [Low_DB(lawbda*); % Dackground image % save the results </pre>					
				52 —	im	write(A	A, [savel	Dir 'background/' imgDir(i).name]); % Save background image		
				53 —	end					
				54 —	toc;					
				命令行窗						
				iter 1, mu=0.002, err=0.013147, T 0 = 36 iter 14, mu=0.002, err=0.038816, T 0 = 36 iter 1, mu=0.002, err=0.23932, T 0 = 23498 iter 2, mu=0.002, err=0.50735, T 0 = 78						
详细信息			^	iter	3, n u=	0.002,	err=0.14	4522, T 0 = 70		
工作区			۲	iter	4, nu=	0.002,	err=0.12	2339, T 0 = 67		
名称▲	值	最大值		iter	o, nu≕	0.002,	err=0.21	173, 110 = 62		
A backImg cornerStren E i i i i i i i i i i j i i i i i i i i	150x200 uint8 150x200 double 150x200 double 150x200 uint8 110 150x200 double 110x1 struct	211 199.0777 63.3211 211 110 211	~	iter iter iter iter 时间i fx >>	5, nu= 7, nu= 8, nu= 9, nu= 10, nu= 已过 44.	0.002, 0.002, 0.002, 0.002, =0.002, 572040	err=0.20 err=0.12 err=0.04 err=0.02 err=0.0 秒。	N099, 10 = 30 2672, T 0 = 48 5128, T 0 = 44 22826, T 0 = 42 246793, T 0 = 42		
.				• • • •						

Figure 4.3

The experimental results are stored in the folder

Figure 4.4